

Technology & Engineering

Challenges of Ethanol Production from Lignocellulosic Biomass

Maha Dakar

Varieties of Carbohydrates

Sugar

Starch

Cellulose/Hemicellulose

What All Plants Have in Common

Why is it difficult to hydrolyze lignocellulosic biomass into sugar to make ethanol?

Lignocellulosic Biomass

- Biomass: biological material derived from living organisms. Biomass for energy related to plant
- Lignocellulosic biomass: cellulose, hemicellulose (complex carbohydrates) & lignin
- Cellulose: structural material in plants & most abundant biomass in earth
- Lignocellulose: strength, resistance to degradation
- Cellulose & hemicellulose: polymers of sugars, potential source of fermentable sugars
- Lignocellulosic biomass do not directly go into food

Lignocellulosic Biomass Feedstock

- Woody Biomass
 - Forest residues
 - Wood waste
- Non-Woody Biomass
 - Agricultural Residues:
 - >Straws (wheat, barley, rice)
 - ➤ Bagasse (sugarcane, sweet sorghum)
 - **≻Stover (corn, milo)**
- Organic Waste
 - Animal waste
 - Sewage sludge

What is Lignocellulosic Material?

lignocellulose = lignin + cellulose + hemicellulose

Composition of Lignocellulose

Lignocellulosic materials	Cellulose (%)	Hemicellulose (%)	Lignin (%)
Hardwoods stems	40–55	24–40	18–25
Softwood stems	45-50	25–35	25-35
Nut shells	25–30	25–30	30-40
Corn cobs	45	35	15
Grasses	25–40	35–50	10-30
Paper	85–99	0	0–15
Wheat straw	30	50	15
Sorted refuse	60	20	20
Leaves	15–20	80–85	0
Cotton seed hairs	80–95	5–20	0
Newspaper	40–55	25-40	18-30
Waste papers from chemical pulps	60–70	10–20	5–10
Primary wastewater solids	8–15	NA	24-29
Swine waste	6.0	28	NA
Solid cattle manure	1.6–4.7	1.4-3.3	2.7-5.7
Coastal Bermuda grass	25	35.7	6.4
Switchgrass	45	31.4	12.0

1st Generation vs. 2nd Generation

How Do We Go From

Plants Cell Walls

Plants Cell Walls:

Optimizing plant biomass for efficient processing requires understanding of plant cell wall structure and function

Primary Cell Wall

Cellulose, Hemicellulose, Lignin
Composition

Cellulose: Rigid, linear polymer of glucose subunits

What We Know About Cellulose?

What We Know About Cellulose...

What We Know About Cellulose...

How An Engineer Can Visualize This?

Starch vs. Cellulose

Starch

Monomer: glucose

Linkage: $\alpha(1-4)(1-6)$

Dimer sugar: maltose

Used for: storage

Enzyme Hydrolysis: fast

Branch: branched

Chains: coiled/branched (bend)

Result: granules

Cellulose

glucose

β(1-4)

cellobiose

structural (support)

very slow

unbranched

extended (rigid)

long fibers

Ethanol Production Flowchart

BIOETHANOL

SUGAR ----> STARCH ----> CELLULOSE

Steps of Biomass Processing

1-Crushing

- Size reduction: milling or chipping
- Accessibility for pre-treatment step

Obstacles

Collection:

- Type/sequence of collection operations & equipment efficiency
- Environmental restrictions (control erosion, soil productivity, carbon level)

Transportation:

- Distance from plant & biomass amount
- Bulky in nature
- Increase density by chipping, grinding or shredding

Storage:

- Hauled to plant
- Stored at production site

2- Pre-Treatment

region

The main purpose for pretreatment:

- Destroy lignin shell protecting cellulose and hemicellulose
- **Decrease crystallinity of cellulose**
- **Increase porosity**
- Must break this shell for enzyme to access substrate (sugar) region

Pre-Treatment methods:

- **Chemical**
- **Physical**
- **Biological**

Chemical Pre-Treatmet

Pre-treatment Type	Example of the Chemical used	Conditions	Advantages and Disadvantages
Concentrated Acid	H ₂ SO ₄ , HCl	Concentrated acid Low temperature	Well known and already used High yields
			Hydrolysis is mainly included
			Corrosion problems
			Material loss due to
			degradation
			High demand for chemicals
			Environmental issues
Diluted Acid	H ₂ SO ₄	w = 0,5-2%	Well known and already used
		T > 160℃	Corrosion problems
			Low yields
			Material loss due to
			degradation
ARP Ammonia	Ammonia	w = 15%	Research topic
Recycled		T = ~ 170℃	Media recoverable
Percoration			Environmental issues due to
			ammonia
Lye	NaOH, Ca(OH) ₂	w = 0,5M	Research topic
		T = ~80℃	Media not recoverable
Organosolv	Ethanol-Water,	T = 150-200℃	Costs of solvent
	Butanol-Water,		Media recoverable
	Ethylene-Glycol		
lonic Liquids	•	T = ~ 110℃	Research topic
			Media recoverable
			Low energy consumption

Physical Pre-Treatment

Pre-treatment Type	Conditions	Advantages and Disadvantages
Steam-Explosion	p = 2,5-7 MPa	Well known and already used
	T = 180-280℃	High yields
		No corrosion problems
		Undesired side-products possible
		High energy demand
LHW - Liquid Hot	T = 170-230℃	Research topic
Water		High yields
		Less side-products than in steam
		explosion
		No corrosion problems
CO ₂ Explosion	p > 7,3 MPa	Research topic
	T > 31,1℃	High costs expected
	super critical CO ₂	Low environmental impact
AFEX Ammonia Fiber	Liq. Ammonia	Low inhibitor formation
Explosion	T = 90-100℃	Media recoverable
		Environmental issues due to ammonia

Biological Pre-Treatment

Pre-treatment Type		Examples of organism	Advantages and Disadvantages		
fungi ^{nt} with funghi		White-rot fungi	Research topic		
		Brown-rot fungi	Slow conversion		
		Soft-rot fungi	Low energy requirements		
			No chemicals required		
			Mild environment conditions		
Pre-treatr	ment with	Sphingomonas	Research topic		
bacteria		paucimobilis,	Slow conversion		
		Bacillus circulans	Low energy requirements		
			No chemicals required		
			Mild environment conditions		

Obstacles

- Most expensive stage in 2nd generation bioethanol
- Inhibitors such as:
 - Phenolic from lignin degradation
 - Furfural from C-5 degradation
 - HMF from C-6 degradation
- Corrosion problems
- Acid recovery is expensive
- Material loss
- Better understanding of plant cell wall structure & function

3- Hydrolysis

Polysaccharides break down into monomers followed by fermentation and distillation

Cellulose can be hydrolyzed using:

- Acid hydrolysis (Traditional method)
- Enzymatic hydrolysis (The current state-of-art method)

Acid hydrolysis advantages:

- Faster acting reaction
- Less residence time in reactor

Enzymatic hydrolysis advantages:

- Run at lower temperature
- Higher conversion
- Environmentally friendly

3- Hydrolysis...

- Cellulase enzyme depolymerize cellulose into fermentable sugars
- Cellulase synthesized by fungi and bacteria work together to degrade cellulose
- Cellulosic enzyme system:
 - 1- Endo-ß-glucanase
 - 2- Exo-ß-glucanase
 - 3- ß-glucosidase

From Cellulose to Glucose

Reaction Pathway:

Optimum Parameters:

pH: 4-5

Tempt: 40-50C

Inhibitors: glucose, cellobiose, some minerals

Obstacles

- Problems for industrial application:
 - 1- High production cost (~40% of total)
 - 2- Low yield
- Few microorganisms are capable of degrading cellulose
- Trichoderma produces endo-ß-glucanase, exo-ß-glucanase & low levels of ß-glucosidase
- Aspergillus produces endo-ß-glucanase, ß-glucosidase & low levels of exo-ß- glucanase
- Inhibitors formation
- Optimizing/understanding enzymes regulation and activity
- Understanding of plant cell wall structure & function

4- Fermentation

- Convert sugars (C-5 and or C-6) to ethanol using microbes
- S.cerevisie for ethanol from glucose (C-6)
- S.cerevisie not able to ferment (C-5)
- Some bacteria ferment C-5 & C-6 (E.coli & Z.mobilis)

Obstacles

- Inhibitors such as:
 - Phenolic from lignin degradation
 - Furfural from C-5 degradation
 - HMF from C-6 degradation
- R&D strategies:
 - Robust organism to fermenting C-5 & C-6
 - Robust organism toward inhibitors/temperature
- Integrate hydrolysis and fermentation into a single microbe
- Low conversion rates for C-5 sugars
- Technology to remove inhibitors is expensive

After All These Challenges In Cellulose Hydrolysis, What About Hemicellulose?

Hemicelullose

Polysaccharides that are more complex than sugar and less complex than cellulose

The second abundant renewable biomass in earth after cellulose

Hemicellulose vs Cellulose

<u>Hemicellulose</u>

Polysaccharides: hetro-polysaccharides

Monomer: different sugar monomers

(xylose, glucose, mannose, galactose, uronic acid)

Acid Hydrolysis: fast

Branch: branched

DP: 150-200

Structure: amorphous

<u>Cellulose</u>

homo-polysaccharides

same monomer

(glucose)

slow

unbranched

800-17000

crystalline

Bagasse Characteristics

	Sugar Content as polymer basis [wt%-dry bagasse]				Acid Insoluble		
	Glucose	Xylose	Arabinose	Galactose	Mannose	Total sugar	Lignin and Ash
Average	44.2	26.6	2.1	0.0	0.3	73.1	26.9
Maximum	47.1	29.1	2.6	0.0	1.1	77.1	29.8
Minimum	40.3	23.0	1.6	0.0	0.0	70.2	22.9

Brazil Strategy

Bagasse Usage

Bagasse Usage...

Bagasse Usage...

Bagasse Usage...

Where is KATZEN From This?

KATZEN has worked with cellulose feedstock for ethanol, pulp and paper & sulfite liquor over 50 years

After this long history, we say C_6 will have contribution as ethanol feedstock but limited to special circumstances

After this long history, we say YES for C₅

Technology & Engineering

