ALCOHOL SCHOOL

DISTILLATION AND MOLECULAR SIEVES: A PRACTICAL VIEWPOINT
FUNDAMENTALS OF DISTILLATION
TYPICAL DISTILLATION RELATIONSHIPS

LOWER TEMPERATURE

FEED

THERMAL ENERGY

VAPOUR

BOILING LIQUID

VAPOUR

CONDENSER

COOLING WATER

REFLUX LIQUID

OVERHEAD PRODUCT

TRAYS (CONTACTING DEVICES)

BOTTOMS PRODUCT
VAPOUR-LIQUID EQUILIBRIUM
ETHANOL-WATER
MOLE % ETHANOL IN VAPOUR

MOLE % ETHANOL IN LIQUID
MOLE % ETHANOL IN VAPOUR

MOLE % ETHANOL IN LIQUID

(10 VOLUME % FEED)
STRUCTURING THE DISTILLATION SYSTEM STRATEGY
OPERATING LINE

Locus of possible concentrations of liquid and vapour passing in tower for a given energy input
VAPOUR-LIQUID EQUILIBRIUM
STAGE ANALYSIS
VAPOUR-LIQUID EQUILIBRIUM
STAGE ANALYSIS

MOLE % ETHANOL IN VAPOUR

MOLE % ETHANOL IN LIQUID

OPERATING LINE STRIPPING
TYPICAL L/V = 5.0

BEER FEED (10 VOLUME %)

STILLAGE (0.02 WT. %)

TYPICAL - 14 RECTIFYING STAGES & STRIPPING STAGES
100 PROOF SPIRIT
DISTILLATION ENERGY CONSUMPTION
STEAM REQUIREMENTS
ETHANOL STRIPPER-RECTIFIER
BTU (In 1000’s) PER GALLON ETHANOL (ANHYDROUS BASIS)

CONSTRAINTS:
• 190 PROOF PRODUCT
• 0.02% (WT.) BOTTOMS
• SATURATED FEED
MJ PER LITER ETHANOL (ANHYDROUS BASIS)

BEER CONCENTRATION (VOLUME %)

CONSTRAINTS:
• 190 PROOF PRODUCT
• 0.02% (WT.) BOTTOMS
• SATURATED FEED
ENERGY
EFFICIENCY
TRADITIONAL

VAPOUR

REFLUX

CONDENSER

OVERHEAD

PRODUCT

FEED

FEED

STEWARDS

STEAM

(ENERGY)

BOTTOMS

PRODUCT

Energy Inefficient
ENERGY TRANSFER BY FORCED - CIRCULATION REBOILER
ONE - LEVEL
ENERGY
CASCADE
ENERGY CASCADe

VAPOUR

REFLUX

FEED

STEAM

(ENERGY)

BOTTOMS

PRODUCT

TOWER 1

OVERHEAD

PRODUCT

RECOVERED

ENERGY

REBOILER

TOWER 2

OVERHEAD

PRODUCT

BOTTOMS

PRODUCT

CONDENSER

OVERHEAD

PRODUCT

FEED
ENERGY CASCADE - FEED PREHEAT

VAPOUR

TOWER 1

REFUX

HOT FEED

STEAM (ENERGY)

BOTTOMS PRODUCT

OVERHEAD PRODUCT

TOWER 2

REFLUX

OVERHEAD PRODUCT

RECOVERED ENERGY

REBOILER

BOTTONS PRODUCT

OVERHEAD PRODUCT

FEED

CONDENSER

FEED
TWO - LEVEL ENERGY CASCADE (3 – TOWER)
BTU (In 1000’s) PER GALLON ETHANOL (ANHYDROUS BASIS)

CONTRAINTS:
- 190 PROOF PRODUCT
- 0.02% (WT.) BOTTOMS
- SATURATED FEED
MJ PER LITER ETHANOL (ANHYDROUS BASIS)

CONSTRAINTS:
- 190 PROOF PRODUCT
- 0.02% (WT.) BOTTOMS
- SATURATED FEED
ENERGY REQUIREMENTS

BASIC

Stripping-Concentrating

14 lb STEAM per U.S. GALLON (absolute)
or
1.7 Kg STEAM per LITER
ENERGY REQUIREMENTS

ADVANCED-INTEGRATED

Stripping-Concentrating

9 lb STEAM per U.S. GALLON (absolute)
or
1.1 Kg STEAM per LITER
CONTACTING DEVICES (TRAYS)
DISTILLATION TRAY FUNCTIONS

- Mix rising vapour with falling liquid
- Allow for separation after mixing
- Provide path for liquid to proceed down the tower
- Provide path for vapour to proceed up the tower
PERFORATED TRAYS

OUTLET WEIR

INLET WEIR

DOWNCOMER AREA

ENRICHED LIQUID

VAPOUR

V-L SEPARATION

V-L MIXING

STRIPPED LIQUID
RELIABILITY

BEER STRIPPER

FOULING
DISC-DONUT TRAYS

DISC

DONUTS

DESCENDING LIQUID

ENRICHED VAPOUR

STRIPPED STILLAGE

FOULING
BAFFLE - TRAY EXPERIENCE

- 39 COMMERCIAL SYSTEMS
 - SULFITE PULPING LIQUOR
 - FERMENTED SULFITE LIQUOR
 - FERMENTED LIGNO-CELLULOSE HYDROLYZATE
 - FERMENTED WHOLE GRAIN
 - ALCELL PULPING LIQUOR
 - FERMENTED CHEESE WHEY
 - FERMENTED CANE MOLASSES
BAFFLE - TRAY EXPERIENCE

- 5 YEAR CLEANING CYCLE FERMENTED GRAIN
- 1 YEAR CLEANING CYCLE FERMENTED CHEESE WHEY
- ELIMINATED ANTI-FOAM AND ANTI-SCALANT
- 6-12 MONTH CLEANING CYCLE FERMENTED “C” MOLASSES
RECOMMENDED TRAY DESIGNS

BEERSTILLS (ALL FOULING FEEDSTOCKS) - BAFFLE TRAY
RECTIFIERS - PERFORATED TRAY
EXTRACTIVE TOWERS - PERFORATED TRAY
TECHNICAL ALCOHOL TOWERS - PERFORATED TRAY
- PACKED (< 24”)
CONTROL STRATEGIES
TEMPERATURE AND PROOF PROFILE

<table>
<thead>
<tr>
<th>TEMP. (°C)</th>
<th>°GL</th>
</tr>
</thead>
<tbody>
<tr>
<td>77</td>
<td>95</td>
</tr>
<tr>
<td>77</td>
<td>94.5</td>
</tr>
<tr>
<td>77</td>
<td>94</td>
</tr>
<tr>
<td>77</td>
<td>93</td>
</tr>
<tr>
<td>78</td>
<td>91.5</td>
</tr>
<tr>
<td>79</td>
<td>89</td>
</tr>
<tr>
<td>80</td>
<td>84</td>
</tr>
<tr>
<td>84</td>
<td>75</td>
</tr>
<tr>
<td>85</td>
<td>69</td>
</tr>
<tr>
<td>93</td>
<td>60</td>
</tr>
<tr>
<td>98</td>
<td>40</td>
</tr>
<tr>
<td>102</td>
<td>20</td>
</tr>
<tr>
<td>106</td>
<td>5</td>
</tr>
<tr>
<td>106</td>
<td>1.5</td>
</tr>
<tr>
<td>107</td>
<td>0.5</td>
</tr>
<tr>
<td>107</td>
<td>0.005</td>
</tr>
<tr>
<td>107</td>
<td>0.00005</td>
</tr>
</tbody>
</table>
TEMPERATURE AND PROOF PROFILE

<table>
<thead>
<tr>
<th>TEMP. (°F)</th>
<th>°PR. (U.S.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>170</td>
<td>190</td>
</tr>
<tr>
<td>170</td>
<td>189</td>
</tr>
<tr>
<td>171</td>
<td>188</td>
</tr>
<tr>
<td>172</td>
<td>186</td>
</tr>
<tr>
<td>173</td>
<td>183</td>
</tr>
<tr>
<td>174</td>
<td>178</td>
</tr>
<tr>
<td>176</td>
<td>168</td>
</tr>
<tr>
<td>184</td>
<td>150</td>
</tr>
<tr>
<td>191</td>
<td>138</td>
</tr>
<tr>
<td>199</td>
<td>120</td>
</tr>
<tr>
<td>208</td>
<td>80</td>
</tr>
<tr>
<td>216</td>
<td>40</td>
</tr>
<tr>
<td>222</td>
<td>10</td>
</tr>
<tr>
<td>223</td>
<td>3</td>
</tr>
<tr>
<td>224</td>
<td>1</td>
</tr>
<tr>
<td>225</td>
<td>0.01</td>
</tr>
<tr>
<td>225</td>
<td>0.0001</td>
</tr>
</tbody>
</table>
DEHYDRATION
VAPOUR-LIQUID EQUILIBRIUM ETHANOL-WATER
STRUCTURING THE DISTILLATION SYSTEM STRATEGY
TERNARY AZEOTROPE DEHYDRATION
VACUUM TUBE
MOLECULAR SIEVE DEHYDRATION

- VAPOUR PHASE ADSORPTION
- NO ENTRAINER
- LOW ENERGY
MOLECULAR SIEVE TYPE 3A

CHEMICAL FORMULA:

\((K_2O \cdot Na_2O) \cdot Al_2O_3 \cdot 2SiO_2 \cdot XH_2O\)
Molecular Sieve Media

Type 3A
MFGE DISTILLATION & DEHYDRATION
PSA MOLECULAR SIEVE
DISTILLATION-DEHYDRATION TECHNOLOGY

<table>
<thead>
<tr>
<th>TYPE</th>
<th>DEHYDRATION TECHNOLOGY</th>
<th>ENERGY (MJ/L)</th>
<th>ENERGY (BTU/Gal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1970’s STANDALONE</td>
<td>AZEOTROPIC</td>
<td>9.5</td>
<td>34,000</td>
</tr>
<tr>
<td>1980’s INTEGRATED</td>
<td>AZEOTROPIC</td>
<td>4.7</td>
<td>17,000</td>
</tr>
<tr>
<td>1990’s INTEGRATED</td>
<td>MOLECULAR SIEVE</td>
<td>3.9</td>
<td>14,000</td>
</tr>
<tr>
<td>2000’s ADDITIONAL</td>
<td>INTEGRATION</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>